Movimentos de rotação

Momento de inércia

DETERMINAÇÃO DO MOMENTO DE INÉRCIA DE DIFERENTES CORPOS DE TESTE

- Determinação da grandeza de orientação angular Dr da mola de acoplamento.
- Determinação do momento de inércia J da barra sem corpos de massa.
- Determinação do momento de inércia J em dependência da distância r dos corpos de massa em relação ao eixo de rotação.
- Determinação do momento de inércia J para um disco de madeira, uma esfera de madeira, assim como um cilindro maciço e um oco.
- Confirmação do Teorema de Steiner.

UE1040205 07/15 UD



Fig. 1: Disposição da medição

FUNDAMENTOS GERAIS

A inércia de um corpo sólido perante uma alteração de seu movimento de rotação ao redor de um eixo fixo é dada pelo momento de inércia J. Ele depende da distribuição da massa no corpo relativa ao eixo de rotação e é tanto maior quanto maior for a distância para o eixo de rotação.

Em geral, o momento de inércia é definido pelo integral do volume:

(1)
$$\mathcal{J} = \int_{V} \mathbf{z}_{z}^{2} \, \rho(\mathbf{z}) \cdot dV$$

 r_{SI} Parte de r perpendicular ao eixo de rotação $\rho(r)$: Distribuição da massa do corpo

Para o exemplo de uma barra, em que são dispostos dois corpos de massa com a massa *m* simetricamente na distância *r* para o eixo de rotação, o momento de inércia é de:

(2)
$$J = J_0 + J_m = J_0 + 2 \cdot m \cdot r^2$$

 $\it J_{\rm 0}$: momento de inércia da barra sem corpos de massa $\it J_{\rm m}$: momento de inércia dos corpos de massa

Agora, os diferentes corpos de teste podem ser afixados ao eixo de rotação. Para a duração de oscilação ${\it T}$ de um período, vale:

$$(3) \quad T = 2\pi \cdot \sqrt{\frac{J}{D_r}}$$

 D_{i} : Grandeza de orientação angular da mola espiral Ou seja, a duração de oscilação T é tanto maior quanto maior o momento de inércia J.

De (3) resulta a equação de determinação para o momento de inércia:

$$(4) \quad J = D_r \cdot \frac{T^2}{4\pi^2}$$

A grandeza de orientação angular da mola espiral pode ser determinada com auxílio de um dinamômetro:

$$(5) \quad D_{r} = \frac{F \cdot r}{\alpha}$$

α: Deslocamento da posição de equilíbrio

LISTA DE APARELHOS

1 Eixo de torção	U20050	1008662
1 Fotocélula	U11365	1000563
1 Contador digital	U8533341	1001032/3
1 Base em tonel 1000 g	U13265	1002834
1 Tripé, 185 mm	U13271	1002836
1 Dinamômetro de precisão 1 N	U20032	1003104
1 Conjunto de corpos de amostra para o eixo de torção	U20051	1008663

MONTAGEM E REALIZAÇÃO

- Montar a disposição de medição conforme mostrado na Fig.
 Ajustar horizontalmente o eixo de torção com auxílio da borboleta e dos parafusos de nivelamento no tripé.
- Conectar a fotocélula na entrada A do contador digital. Ajustar o seletor no contador digital para o tipo de operação no símbolo para medição dos tempos de período de um pêndulo.

Orientações:

- Sempre deslocar a disposição da experiência de forma que a mola de espiral seja comprimida e não estendida.
- No início do procedimento de oscilação, é recomendado um deslocamento de 180° (máx. 360°).

Determinação da grandeza de orientação angular \emph{D}_{r} da mola espiral

- Pendurar o dinamômetro sucessivamente em intervalos de r = 5, 10, 15, 20, 25 e 30 cm do centro do eixo de rotação na haste e deslocar por α□= 180° = π. Atentar para que o dinamômetro esteja sempre disposto perpendicularmente à haste.
- Ler no dinamômetro os valores para a força necessária para o deslocamento nos respectivos intervalos. Anotar todos os valores na Tabela 1.

Determinação do momento de inércia \emph{J}_0 da haste sem corpos de massa

 Deslocar a haste sem corpos de massa afixados em 180° e medir, com auxílio do contador digital, a duração de um período de oscilação T₀.

Determinação do momento de inércia J em dependência da distância r dos corpos de massa do eixo de rotação

- Fixar os dois corpos de massa na haste em distâncias de r = 5, 10, 15, 20, 25 e 30 cm de maneira respectivamente simétrica à esquerda e à direita do centro do eixo de rotação.
- Não usar os parafusos nos corpos de massa que pressionam as travas esféricas contra a haste; os parafusos são ajustados de forma que os corpos de massa possam ser deslocados e fixados contra a força centrífuga.
- Deslocar a haste em 180° e, com auxílio do contador digital, medir respectivamente a duração de um período de oscilação T e anotar na Tabela 2.

Determinação do momento de inércia *J* para um disco de madeira, uma esfera de madeira, um cilindro maciço e um oco

- Montar os corpos de amostra sucessivamente no eixo de torção. Para o cilindro maciço e oco, utilizar o prato de suporte.
- Para a medição da duração de um período de oscilação, fixar respectivamente, de forma adequada, uma bandeira interruptora de papel nos corpos de amostra.
- Deslocar o disco e a esfera de madeira sucessivamente em 180 ° e medir respectivamente a duração de um período de oscilação. Anotar os valores na Tab. 3. Utilizar as marcações brancas nos corpos de amostra como auxílio de orientação no deslocamento.
- Deslocar o prato de suporte em 180° e medir a duração de um período de oscilação. Anotar o valor na Tab. 3.
- Deslocar sucessivamente o cilindro maciço e o oco em 180° e medir a respectiva duração de um período de oscilação. Anotar os valores na Tab. 3. Utilizar as marcações brancas nos corpos de amostra como auxílio de orientação no deslocamento.

Confirmação do Teorema de Steiner

- Fixar o pino sucessivamente nos furos com distância a = 0, 2, 4, 6, 8, 10, 12 e 14 cm do centro do disco.
- Montar o disco para as diferentes posições do pino no eixo de torção, deslocar respectivamente em 180° e medir a duração de um período de oscilação. Para tanto, fixar, de forma adequada, uma bandeirinha de papel no disco. Anotar os valores na Tab. 4.

EXEMPLO DE MEDIÇÃO

Determinação da grandeza de orientação angular \emph{D}_{r} da mola espiral

Tab. 1: Valores de medição para a força F na distância r do centro do eixo de rotação com deslocamento estático da haste em α = 180° = π .

r/ m	F/N
0,05	1,72
0,10	0,86
0,15	0,58
0,20	0,46
0,25	0,32
0,30	0,26

Determinação do momento de inércia \emph{J}_0 da haste sem corpos de massa

Duração de um período de oscilação T_0 : 2460 ms

Determinação do momento de inércia J em dependência da distância r dos corpos de massa do eixo de rotação

Tab. 2: Duração de período *T* para a oscilação da haste com os corpos de massa fixados na haste na distância *r*.

r/ m	T / ms
0,05	2825
0,10	3663
0,15	4740
0,20	5926
0,25	7170
0,30	8440

Determinação do momento de inércia ${\it J}$ para um disco de madeira, uma esfera de madeira, um cilindro maciço e um oco

Tab. 3: Duração do período T para a oscilação de diferentes corpos de amostra.

Corpo de amostra	T / ms
Disco	1800
Esfera	1880
Prato de suporte	512
Cilindro maciço + prato de suporte	917
Cilindro oco + prato de supor- te	1171

Confirmação do Teorema de Steiner

Tab. 4: Duração do período T para a oscilação do disco ao redor de diferentes eixos à distância a do centro de gravidade.

T / ms
2922
2960
3121
3327
3622
3948
4359
4748

AVALIAÇÃO

Determinação da grandeza de orientação angular \emph{D}_{r} da mola espiral

De (5), deduz-se:

(6)
$$F = \alpha \cdot D_r \cdot \frac{1}{r} = C \cdot \frac{1}{r} \text{ com } C = \alpha \cdot D_r$$

 Aplicar os valores de medição para as forças F da Tabela 1 contra os valores recíprocos das distâncias 1/r e adaptar uma reta nos pontos de medição.

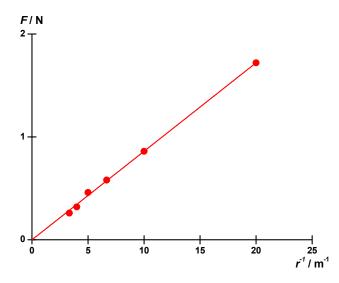


Fig. 2: Força *F* em dependência do valor recíproco da distância das massas 1/*r*.

 Da inclinação C da reta conforme (6), determinar a grandeza de orientação angula Dr:

(7)
$$C = \alpha \cdot D_r \Leftrightarrow D_r = \frac{C}{\alpha} = \frac{0,0860 \text{ Nm}}{\pi} = 0,0274 \text{ Nm}.$$

Determinação do momento de inércia J_0 da haste sem corpos de massa

Para o momento de inércia da haste sem corpos de massa resulta, a partir de (4):

(8)
$$J_0 = 0.0274 \text{ Nm} \cdot \frac{(2,460 \text{ s})^2}{4\pi^2} = 4,20 \cdot 10^{-3} \text{ kg} \cdot \text{m}^2$$
.

Determinação do momento de inércia J em dependência da distância r dos corpos de massa do eixo de rotação

- Determinar o momento de inércia J da haste com corpos de massa conforme (4) a partir dos valores na Tab. 2 e anotar na Tab. 5.
- Determinar o momento de inércia J_m dos corpos de massa conforme

(9)
$$J_{\rm m} = J - J_{\rm 0}$$

e anotar na Tab. 5.

Tab. 5: Duração do período T, momento de inércia J da haste com corpos de massa e momento de inércia $J_{\rm m}$ dos corpos de massa para diferentes distâncias r para o eixo de rotação

<i>r /</i> m	T/s	J / 10 ⁻³ kg⋅m ²	J_m / 10 ⁻³ kg·m ²
0,05	2,825	5,54	1,34
0,10	3,663	9,31	5,11
0,15	4,740	15,6	11,4
0,20	5,926	24,4	20,2
0,25	7,170	35,7	31,5
0,30	8,440	49,4	45m2

Conforme (2), vale:

(10)
$$J_m = 2 \cdot m \cdot r^2$$

• Aplicar os momentos de inércia J_m da Tabela 5 contra os quadrados das distâncias r^2 e confirmar a dependência linear em (10) (Fig. 3).

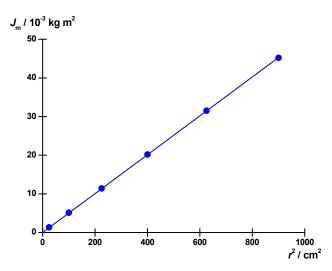


Fig. 3: Momento de inércia J_m dos corpos de massa em dependência do quadrado da distância das massas r.

Determinação do momento de inércia *J* para um disco de madeira, uma esfera de madeira, um cilindro maciço e um oco

- Determinar os momentos de inércia J para os diferentes corpos de amostra conforme (4) a partir dos valores de medição na Tab. 3 e anotar os valores na Tab. 6.
- Para a determinação dos momentos de inércia do cilindro maciço e do oco J_V e J_H, subtrair respectivamente o momento de inércia do prato de suporte J_T dos valores dos momentos de inércia do cilindro maciço + prato de suporte e do cilindro oco + prato de suporte J_{VT} e J_{HT}:

(11)
$$\frac{J_{V} = J_{VT} - J_{T}}{J_{H} = J_{HT} - J_{T}}$$
.

 Calcular os momentos de inércia teóricos J_{th} com auxílio dos dados no anexo, anotar na Tab. 6 e comparar com os valores determinados a partir da medição.

Tab. 6: Momentos de inércia *J* para diferentes corpos de amostra.

Corpo de amost- ra	T/s	<i>J</i> / 10 ⁻³ kg⋅m²	<i>J</i> _{th} / 10 ⁻³ kg⋅m ²
Disco	1,800	2,25	$^{1}/_{2} \cdot \text{m} \cdot r^{2} = 2,57$
Esfera	1,880	2,45	$^{2}/_{5}\cdot m\cdot r^{2}=2,54$
Prato de suporte	0,512	0,18	_
Cilindro maciço + Prato de suporte	0,917	0,58	-
Cilindro maciço	1	0,40	$^{1}/_{2} \cdot \text{m} \cdot r^{2} = 0,43$
Cilindro oco + Prato de suporte	1,171	0,95	-
Cilindro oco	-	0,77	$m \cdot r^2 = 0.86$

Os valores determinados a partir da medição conferem com os valores teóricos calculados.

Confirmação do Teorema de Steiner

 Determinar os momentos de inércia J_a para as diferentes distâncias a conforme (4) a partir dos valores de medição na Tab. 4 e anotar os valores na Tab. 7.

Tab. 7: Momento de inércia J_a do disco em oscilação ao redor de diferentes eixos à distância a do centro de gravidade.

a / cm	T/s	<i>J</i> _a / 10 ⁻³ kg⋅m ²
0	2,922	5,93
2	2,960	6,08
4	3,121	6,76
6	3,327	7,68
8	3,622	9,11
10	3,948	10,8
12	4,359	13,2
14	4,748	15,6

· Conforme o Teorema de Steiner, vale:

(12)
$$J_a = J_0 + m \cdot a^2 \text{ com } J_0 = J_a (a = 0)$$

 Aplicar J_a – J₀ contra a², confirmar a dependência linear em (12) e, com ela, o Teorema de Steiner (Fig. 4).

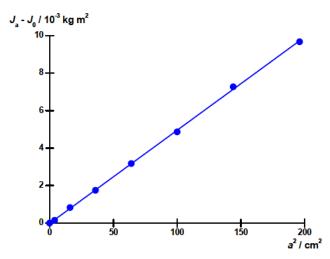


Fig. 4: Diferença dos momentos de inércia $J_a - J_0$ do disco em dependência da distância a do eixo de oscilação em relação ao centro de gravidade.

ANEXO: DADOS TÉCNICOS

Barra

Comprimento: 620 mm

Massa: aprox. 135 g

Peças de peso: 260 g cada

Disco circular

Diâmetro: 320 mm

Massa: aprox. 495 g

Orifícios: 8

Distância da perfuração: 20 mm

Esfera de madeira

Diâmetro: 146 mm Massa: aprox. 1190 g

Disco de madeira

 Diâmetro:
 220 mm

 Altura:
 15 mm

 Massa:
 aprox. 425 g

Prato de recepção

Diâmetro: 100 mm Massa: aprox. 122 g

Cilindro maciço (madeira)

 Diâmetro:
 90 mm

 Altura:
 90 mm

 Massa:
 aprox. 425 g

Cilindro oco (metal)

Diâmetro externo: 90 mm
Altura: 90 mm
Massa: aprox. 425 g