

Equazioni delle lenti

Determinazione della distanza focale di una lente secondo il metodo di Bessel

- Determinazione delle due posizioni di una lente sottile che forniscono un'immagine nitida.
- Determinazione della distanza focale di una lente sottile.

UE4010100

07/16 JöS

Fig. 1 Disposizione per la misurazione

BASI GENERALI

La distanza focale f di una lente indica la distanza tra il piano principale della lente e il punto focale, vedere fig. 2. È possibile definirla conformemente al metodo Bessel (da *Friedrich Wilhelm Bessel*). Per questo vengono misurate le diverse distanze tra gli elementi del banco ottico.

In base alle fig. 2 e 3 si riconosce che per una lente sottile deve valere il rapporto geometrico

(1)
$$a = b + g$$

a: Distanza tra l'oggetto G e l'immagine B

b: Distanza tra la lente e l'immagine B

g: Distanza tra l'oggetto G e la lente.

Uso di b = a - g nell'equazione delle lenti

$$(2) \quad \frac{1}{f} = \frac{1}{b} + \frac{1}{g}$$

f: Distanza focale della lente

si ottiene:

$$(3) \quad \frac{1}{f} = \frac{a}{a \cdot g - g^2}$$

Ciò corrisponde a un'equazione quadratica $g^2 - a \cdot g + a \cdot f = 0$ con soluzioni

(4)
$$g_{1,2} = \frac{a}{2} \pm \sqrt{\frac{a^2}{4} - a \cdot f}$$
.

Per entrambe le distanze dell'oggetto g_1 e g_2 si ha per a > 4f un'immagine nitida. Dalla loro differenza è possibile definire la distanza focale della lente:

(5)
$$e = g_1 - g_2 = \sqrt{a^2 - 4af}$$

La differenza e è la distanza tra entrambe le posizioni delle lenti P1 e P2 che rendono un'immagine nitida.

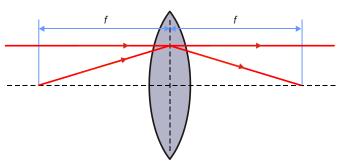


Fig. 2 Rappresentazione schematica per la definizione della distanza focale di una lente sottile

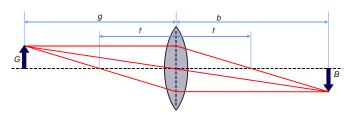


Fig. 3 Cammino ottico schematico attraverso una lente

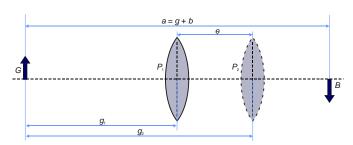


Fig. 4 Disposizione schematica di due posizioni di lenti che producono un'immagine nitida sullo schermo

ELENCO DEGLI STRUMENTI

1	Banco ottico K, 1000 mm	1009696 (U8475240)
4	Cavaliere ottico K	1000862 (U8475350)
1	Lampada ottica K	1000863 (U8475400)
1	Trasformatore 12 V, 25 VA @230V	1000866 (U8475470-230)
0		
1	Trasformatore 12 V, 25 VA @115V	1000865 (U8475470-115)
1	Lente collettrice K, f = 50 mm	1000869 (U8475901)
1	Lente collettrice K, f = 100 mm	1010300 (U8475911)
1	Supporto di fissaggio K	1008518 (U84755401)

Set di 4 oggetti per immagine 1000886 (U8476605) Schermo di proiezione K, bianco 1000879 (U8476320)

MONTAGGIO ED ESECUZIONE

- Sistemare e fissare i quattro cavalieri ottici sulle posizioni 5 cm, 4 cm, 50 cm e 89,5 cm (bordo di sinistra) sul banco ottico. Come mostrato in Fig. 1, inserire in sequenza la lampada ottica nel primo cavaliere ottico, la lente convessa f = 50 mm e il supporto di fissaggio nel secondo e lo schermo nel quarto. Il terzo cavaliere ottico rimane inizialmente libero.
- Collegare la lampada ottica al trasformatore 12 V e accenderla.
- Spostare il secondo cavaliere ottico di modo che sullo schermo si veda un'immagine nitida della spirale incandescente della lampada ottica.
- Inserire nel supporto di fissaggio il diaframma F o la diapo del set di 4 oggetti per immagine. Assicurare un'illuminazione uniforme.
- Inserire nel terzo cavaliere ottico la lente convessa f = 100 mm.
- Spostare gradualmente la lente convessa f = 100 mm e trovare le due posizioni che permettono di ottenere un'immagine nitida sullo schermo.
- Rilevare la distanza a tra oggetto e immagine come differenza tra la posizione dell'oggetto di proiezione e quella dello schermo sulla scala del banco ottico e annotarla in Tab. 1.
- Rilevare le distanze dell'oggetto g₁ e g₂ come differenze tra le due posizioni della lente convessa f = 100 mm e quella dell'oggetto di proiezione sulla scala del banco ottico e annotarle in Tab. 1.
- Eseguire la misurazione variando la posizione dello schermo per altre distanze a. Rispettare la condizioni a > 4f (f = 100 mm) e correggere innanzitutto la posizione del secondo cavaliere ottico con la lente convessa f = 50 mm in modo tale che sullo schermo si veda nuovamente un'immagine nitida della spirale incandescente della lampada ottica.

ESEMPIO DI MISURAZIONE ED ANALISI

Tab. 1:Distanze dell'oggetto misurate g_1 e g_2 , relativa differenza e e distanza focale calcolata f per diverse distanze a tra schermo e oggetto di proiezione.

a / mm	<i>g</i> ₁ / mm	<i>g</i> ₂ / mm	e/mm	f/mm
826	714	118	596	99
724	605	124	481	101
674	556	130	426	101
613	487	138	349	104
522	394	134	260	98

Dall'equazione (5) emerge la formula per la distanza focale della lente sottile

(6)
$$f = \frac{a^2 - e^2}{4a}$$

secondo il metodo di Bessel.

- Calcolare le distanze focali f partendo dalle distanze a e dalle diifferenze e (Tab. 1) in base all'equazione (6) e registrare in Tab. 1.
- Calcolare il valore medio di tutte le distanze focali:

$$(7) \quad \bar{f} = \frac{\sum_{i=1}^{5} f_i}{5}$$

Si ottiene f= 101 mm, in perfetto accordo con il valore nominale f= 100 mm.

Presumendo una precisione di 1 mm per il posizionamento dei componenti ottici e il rilevamemto delle posizioni sulla scala del banco ottico, l'incertezza di misura relativa di una singola misura ammonta circa all'1%.